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The effect of wire break distribution on the breaking strength 
of a wire rope 

Summary 

The work presented in this paper was conducted with a view to assess the effect of the 
distribution of wire breaks on the breaking strength of a spiral strand rope. It has been 
previously noted that the loss in breaking strength of a rope with wire breaks can be 
more than the effective loss in metallic area and this is especially true if the breaks are 
asymmetric. A ratio "k" has been used to characterise this where a value of 1 means 
that the strength loss is exactly equivalent to metallic area loss and higher values of k 
mean that the strength loss is (proportionally) higher than the metallic area loss. 
A review has been made of previous work undertaken by Oplatka [1] and SIMRAC (the 
South African “Safety in Mines Research Advisory Committee”) [2] for various 
constructions of six strand rope. The results appear to show a value of k varying from 
2 - 3 for increasingly severe levels of asymmetric damage, with a value closer to 1 for 
symmetric damage. In addition to the earlier studies, series of tests on artificially 
damaged six strand ropes have been undertaken and the results of these tests appear 
to be broadly in agreement with the previous work. 
A series of breaking tests have been made on two different constructions of wire strand 
with various levels of damage. An FE simulation has been developed for one 
construction and comparative measurements made on a strain gauged sample, 
undertaking load-unload tests for various levels of damage. The experimental results 
indicate that the k factor does not deviate significantly from 1 for all of the asymmetric 
configurations considered which was not as expected or predicted by the initial FE 
model. The strain gauge experiment provided some insight as to the reason for this 
behaviour. Tests on a single wire show a large level of plastic deformation before the 
wire fails (at 4%) and although significant asymmetric load sharing of wires is 
measured for lower loads, as the loads moves towards the rope break there is a 
convergence of wire load values which become much more evenly distributed at the 
point of ultimate failure. By re-running the FE model with the non-linear stress strain 
relationship it is possibly to partially simulate this behaviour although there is still a 
discrepancy, possibly caused by physical wire realignments taking place which have 
not been considered in the model. 
It is concluded that although k is a useful parameter for six strand rope, it is not an 
appropriate measure for determining strength loss in an asymmetrically damaged 
strand. However, there will be much more significant endurance loss caused by 
variations in wire load in standard operation load range of the rope. The use of an 
amplification factor to quantify this is proposed, with the suggestion that it could be 
incorporated into the rope discard criteria. 
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1 Motivation of the study 
At the OIPEEC conference in Oxford (2013) the authors presented the results of a 
study investigating the influence of the so called “safety” clamp on a rope termination 
[3]. The conclusion of this work was that the real effect of the “safety” clamp was a 
dramatic reduction of the service of the rope: for a full locked coil rope at given loading 
conditions the loss in endurance was as much as 80%. 
About one year after this publication, for one of the examples presented in the paper 
(that of a cable stayed bridge) significant groups of wire breaks were found during a 
routine inspection (Figure 1). 
This damage raised the question: what is the residual breaking strength of a rope with 
such damage? 
 

 
Figure 1: Wire breaks on a spiral strand rope suffered in service with a "safety" clamp. (Note that in 

this example a series of four safety clamps have been employed on each cable.) 

 
 
2 Overview of the work 
A review of literature published on the effect of wire breaks on strength of a rope 
identified only work undertaken on stranded ropes [1, 2]. The results from these studies 
were assessed in order to identify possible influencing factors (such as rope diameter, 
stiffness, construction…). After this review, comparative breaking load tests were 
made on six strand ropes performed to confirm the conclusion of this analysis. 
In parallel to this work, tests and calculations were also made with spiral strand rope. 

In front of the first 
clamp 

In between two clamps 
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However, simply measuring the remaining breaking strength of the spiral strand did 
not provide sufficient information to sensibly compare the results of breaking strength 
measurements and calculations. In order to address this problem, a sample of one of 
the spiral strand ropes was prepared with strain gauges on each of its outer wires. 
Finally tests were performed to evaluate whether the same factor of influence identified 
for the stranded rope also applied to the spiral strand rope. 
 
 
3 Evaluation of the influence of the wire break distribution 

3.1 Parameters for this study 
The following parameters were defined in this work: 
 
 A0 = Initial metallic section (mm²) 
 A = Residual metallic section (mm²) 
 F0 = Initial breaking strength (kN) 
 F = Residual breaking strength (kN) 
 (A0 - A)/A0 = 1-A/A0 = Loss of metal section (%) 
 (F0 - F)/F0 = 1-F/F0 = Loss of strength (%) 
 
The factor k is the ratio between the loss of strength and the loss of metallic section: 

(F0 - F)/F0 = k × [(A0 - A)/A0] 
k = (1 - F/F0)/( 1 - A/A0) 

 

3.2 Definition of the degree of asymmetry 
The asymmetry of the damage must be taken into account with respect to both the X 
axis and the Y axis. 
The position and the number of cut wires are identified using a similar notation to that 
employed in the SIMRAC paper, and as shown in Figure 2. 
 

    
Symmetry 

6.0.0 0.0.6 

Partial symmetry 

4.4.4 0.0.0 

Partial symmetry 

6.6.0 0.0.0 

Asymmetry 

12.0.0 0.0.0 

Figure 2:  Notation used to define the degree of asymmetry. 
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4 Analysis of the existing work 

4.1 Results from Prof. Oplatka 
Professor Oplatka tested mainly symmetrical or almost symmetrical configurations. 
The tests were performed on Ø22.5 mm ropes with constructions 6×7 + FC and 6×17 
+ FC both Lang's and ordinary lay. The most asymmetrical configurations tested were 
in tests I/5 and I/18 (Table 1). 
It is noted that for all the tests the loss of metallic area was significant (from 32% to 
84%), well beyond the discard criteria for the rope. 
 

Rope Test no. A/A0 [%] F/F0 [%] Type of symmetry k 

6×(1+6)+FC / L I/1 52 45 3.3.3 3.3.3 (int.) 1.15 

6×(1+6)+FC / L I/2 52 47 3.3.3 3.3.3 (ext.) 1.10 

6×(1+6)+FC / L I/3 52 48 3.3.3 3.3.3 (mix.) 1.08 

6×(1+6)+FC / L I/4 52 54 3.3.3 3.3.3 (mix.) 0.96 

6×(1+6)+FC / L I/5 52 28 5.5.5 3.0.0 1.50 

6×(1+6)+FC / L I/6 36 22 5.5.5 5.2.2 (int.) 1.22 

6×(1+6)+FC / L I/7 36 24 5.5.5 5.2.2 (int.) 1.19 

6×(1+6)+FC / L I/8 36 22 5.5.5 5.2.2 (int.) 1.22 

6×(1+6)+FC / L I/9 36 23 5.5.5 5.2.2 (mix.) 1.20 

6×(1+6)+FC / L I/10 36 23 4.4.4 4.4.4 1.06 

6×(1+6)+FC / L I/11 28 18 5.5.5 5.5.2 (int.) 1.14 

6×(1+6)+FC / L I/12 28 18 5.5.5 5.5.2 (ext.) 1.14 

6×(1+6)+FC / L I/13 20 21 5.5.5 5.5.5 (ext.) 0.99 

6×(1+6)+FC / L I/14 20 20 5.5.5 5.5.5 (int.) 1.00 

6×(1+6)+FC / L I/15 20 15 5.5.5 5.5.5 (mix.) 1.06 

6×(1+6)+FC / L I/16 16 13 6.6.6 6.6.6 (mix.) 1.04 

6×(1+6)+FC / L I/17 25 18 2.2.2 2.2.2 (ext.) 1.09 

6×(1+6)+FC / L I/18 68 51 4.4.4 0.0.0 1.53 

6×(1+6)+FC / L II/1 43 30 5.5.5 5.2.2 (int.) 1.23 

6×(1+6)+FC / R III/1 43 34 5.5.5 5.2.2 (int.) 1.16 

6×(1+8+8)+FC / L IV/1 28 19 7.7.7 7.5.5 (mix.) 1.13 

6×(1+8+8)+FC / R V/1 28 23 7.7.7 7.5.5 (mix.) 1.07 

6×(1+8+8)+FC / R V/2 28 28 6.6.7 6.6.7 (int.) 1.00 

Table 1: Summary of the results of the tests reported by Prof. Oplatka [1] (L = Lang's lay, R = regular 
or ordinary lay). 
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4.2 Results from SIMRAC 
A significant number of tests were performed on ropes of different diameters (Table 2). 
Most of the ropes were triangular strand with a fibre core, as this construction was 
applicable to the mine hoisting application of interest to the research committee. Each 
sample was prepared by casting white metal sockets before cycling 500 times between 
5% and 25% of the new rope breaking strength before cutting the desired numbers of 
wires. Comparative tests were also conducted on a Ø41 mm rope with the cycling 
conducted after the wires had been cut, or with no cycling at all. 
Tests carried out by Borello and Kuun in 1994 [2] investigated different kinds of 
symmetry. Later tests performed by Hecker and Kuun in 1996 [2] were limited to 
asymmetrical wire break configurations (N.0.0 0.0.0). 
 

Triangular Strand Rope Diameter [mm] Number of tests  

6 × 32 + FC 48 46 
Borello and Kuun, 1994 

6 × 36 + FC 63 3 

6 × 34 + FC (new) 62 5 

Hecker and Kuun, 1996 

6 × 34 + FC (discarded) 62 20 

6 × 32 + FC 48 11 

6 × 26 + FC 32 7 

6 × 29 + FC 41 22 

Round Strand Rope   

6 × 25 + IWRC 48 5 

  119 

Table 2:  Overview of the tests performed by SIMRAC [2]. 

 
 
4.3 Analysis of the SIMRAC results 

4.3.1 Scatter among the results 
Each configuration of cut wires was tested several times, from two to six times. 
The following graph (Figure 3) summarises the results of the Triangular Strand ropes 
for the asymmetric configuration (N.0.0 0.0.0). 
It may be seen that there is significant scatter among these results. For the same rope, 
for the same diameter and for the same cut wire configuration variations of the k factor 
of 20% to 45% are apparent. 
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Figure 3:  SIMRAC - Results for asymmetric configuration – Scatter. 

 

4.3.2 Influence of the diameter 
To accommodate the scatter noted above, the average result for each test 
configuration has been used. 
The following graph (Figure 4) shows the results of the Triangular Strand ropes for the 
asymmetric configuration (N.0.0 0.0.0). 
It is obviously impossible to establish a rule that indicates how the diameter of the rope 
influences the k factor. 
 

 
Figure 4:  SIMRAC - Asymmetric configuration – Influence of the rope diameter. 
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4.3.3 Influence of the stiffness 
Figure 5 compares the behaviour of a Round Strand with IWRC to the behaviour of a 
Triangular Strand rope with Fibre Core. Only ropes of 48 mm diameter have been 
taken into account. 
The Round Strand rope with IWRC is stiffer than the Triangular Strand rope with fibre 
core. 
There are only a few measurements available for the rope with IWRC, but it seems 
that the k factor decreases slightly if the rope gets stiffer, which does not seem logical. 
The difference is, however, not significant if we take into account the discrepancies 
identified above. 
 

 
Figure 5:  SIMRAC - Asymmetric configuration – Influence of the rope stiffness. 

 
4.3.4 Influence of the degree of asymmetry 
In order to assess the influence of the degree of asymmetry, the following 
configurations: (N.0.0 0.0.0), (N.N.0 0.0.0) and (N.N.N 0.0.0) have been considered 
(tests performed by Borello and Kuun, 1994). The tests performed by Hecker and 
Kuun, 1996 are related to the configuration (N.0.0 0.0.0). 
Figure 6 presents a summary of the results for all these tests. 
For the configuration (N.N.N 0.0.0) only two SIMRAC results were available. 
The tests performed by Oplatka, (5.5.5 3.0.0) and (4.4.4 0.0.0) are quite close to the 
configuration (N.N.N 0.0.0). However, the results are not visible on the graph because 
the loss of metallic area is much bigger than that of the SIMRAC tests. 
However, the fitted curve for the (N.N.N 0.0.0) includes the SIMRAC results and the 
Oplatka results. 
The degree of asymmetry significantly influences the results. The k factor increases 
when the degree of asymmetry increases. 
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Figure 6:  SIMRAC - Asymmetric configuration – Influence of the degree of asymmetry. 

 
 
5 Test samples 
Table 3 summarises the stranded ropes and spiral strand which were used in this 
study. 
 

Cross section Construction details 

 

Ø16 mm and Ø28 mm 6×37 (1-6/12/18) - FC sZ 

Ø16 mm 1960 N/mm2 grade, MBL 148 kN 

Ø28 mm 1770 N/mm2 grade, MBL 408 kN 

 

Ø16 mm 6×19 (1-6/12) - WSC 

1960 N/mm2 grade, MBL 182 kN 

 

 

Ø16 mm 1 × 19 (1-6/12) sZ, galv. Class A 

1770 N/mm2 grade, MBL 246.4 kN 

 

 

Ø16 mm 1 × 37 (1-6/12/18) 

1570 N/mm2 grade, MBL 230 kN 

 

Table 3:  Details of the ropes used in the study. 
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6 Testing equipment 
TTI Testing has a number of machines suitable for the tensile testing of ropes. Two 
machines were used in programme of work, the 600 kN machine, which is a long 
horizontal machine (Figure 7), and the 250 kN vertical 'Dartec'. 
Table 4 lists the main parameters of these two pieces of equipment. 
 

 
Figure 7:  600 kN testing machine at TTI Testing’s laboratory in Wallingford, UK. 

 

Parameter   

Load capacity (kN) 600 250 

Actuator stroke (mm) 2,000 150 

Adjustable cross head for slack removal Y Y 

Moveable ‘static’ crosshead Y N/A 

Bed length (mm) 13,000 1,250 

Controller Cube SERIES Cube SERIES 

Fatigue rated Y Y 

Block loading Y Y 

Service (random) loading (waveform from .xls file) Y Y 

Table 4:  Main parameters of the 600 kN long bed and 'Dartec' tensile testing machines. 
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7 Breaking test results with stranded ropes 
Initial tests were conducted on the stranded ropes. Samples were terminated using 
Wirelock® resin compound, the wires were cut and the rope cycled five times to 50% 
rope MBL before breaking. The results for these tests on the three different stranded 
ropes are presented in Tables 5, 6 and 7. 
 

Cut 
wires 

%CSA 
cut Comments Breaking 

Load  
% CSA 

residual 
% 

residual 
strength 

 
k 

[ - ] [ % ] [ - ] [kN] [ % ] [ % ] [ - ] 

0 0 (0.0.0 0.0.0) 184.8 100 100 1.00 

4 2.8 (4.0.0 0.0.0) 181.8 97.2 98.4 0.57 

Table 5:  Cut wire tests on Ø16 mm Six strand rope with WSC (7 × 19). 

 

Cut 
wires 

%CSA 
cut Comments Breaking 

Load  
% CSA 

residual 
% 

residual 
strength 

 
k 

[ - ] [ % ] [ - ] [kN] [ % ] [ % ] [ - ] 

0 0 (0.0.0 0.0.0) 174.5 100 100 1.00 

4 1.8 (4.0.0 0.0.0) 171.2 98.2 98.1 1.06 

Table 6:  Cut wire tests on Ø16 mm Six strand rope with FC (6 × 36 + FC). 

 

Cut 
wires 

%CSA 
cut Comments Breaking 

Load  
% CSA 

residual 
% 

residual 
strength 

 
k 

[ - ] [ % ] [ - ] [kN] [ % ] [ % ] [ - ] 

0 0 (0.0.0 0.0.0) 521.7 100 100 1.00 

4 1.8 (4.0.0 0.0.0) 508.5 98.2 97.5 1.39 

8 3.6 (8.0.0 0.0.0) 485.2 96.4 93.0 1.94 

16 7.2 (8.8.0 0.0.0) 469.0 92.8 89.9 1.40 

24 10.7 (8.8.8 0.0.0) 456.2 89.3 87.4 1.17 

24 10.7 (4.4.4 4.4.4) 470.2 89.3 90.1 0.93 

12 5.3 ((8+4).0.0 0.0.0) 449.1 94.7 86.1 2.63 

24 10.5 ((8+4).(8+4).0 0.0.0) 405.1 89.5 77.6 2.13 

Table 7:  Cut wire tests on Ø28 mm Six strand rope with FC (6 × 36 + FC). 
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Figure 8 superimposes the results of the 28 mm rope tests on those obtained by 
SIMRAC (Figure 6). 
 

 
Figure 8:  Results of the tests performed with the 28 mm rope. 

 
For the configurations (N.0.0 0.0.0), the red points and for the configuration (N.N.0 
0.0.0), the yellow points, the results of the tests reported here on a 6×36 + FC rope are 
fully in agreement with the SIMRAC results. 
For the configuration (N.N.N 0.0.0), the green point, there is some discrepancy but it 
is noted that the green curve is based only on a few data, and furthermore that these 
data are obtained from different sources. 
For the symmetric configuration (N.N.N N.N.N), the violet point, the k factor is slightly 
smaller than 1, which is also in agreement with the SIMRAC results. 
  



Rope – Present and Future 

278 

8 Calculation of a spiral strand rope 
Following review of the literature and some testing on stranded ropes, which helped to 
identify the critical parameters, attention was turned to model the spiral strand rope. 
The wires were modelled using tetragonal section 3D elements in order to facilitate the 
calculation of the contact between layers. Each tetragonal section had the same area 
as the cylindrical section of the wire. Calculations were performed using ANSYS 
Software Release 16.2. 
 

 

Diameter 
[mm] 

Section 
[mm²] 

Core 3.470 9.457 

Layer 1 3.165 7.868 

Layer 2 3.170 7.892 
  

Table 8:  Composition of the Spiral Strand rope. Figure 9:  3D model of the rope. 

 
Each end of the rope was fixed, only the translation of one of them was allowed. The 
tensile force was applied to the end which was free to move. The cut wires were 
removed from the model. 
To simplify the calculation model, layer one and the core wire were modelled by a 
single cylinder with an adapted Young's modulus. 
The distribution of the forces and of the stresses in layer 2 was checked and was the 
same in the simplified model as with the detailed model which included all the wires. 
Calculations were performed for the configurations listed in Table 9. 
 

 

Configuration Cut wires Breaking load 
[kN] k factor 

No cut wire - 250 1.00 

2 cut wires symmetric 1 + 7 225 0.95 

4 cut wires symmetric (1 + 2) + (7 + 8) 200 0.96 

8 cut wires symmetric (1 to 4) + (7 to 10) 145 1.01 

1 cut wires asymmetric 1 225 1.92 

2 cut wires asymmetric 1 + 2 200 1.92 

4 cut wires asymmetric 1 to 4 165 1.63 

8 cut wires asymmetric 1 to 8 110 1.34 

Table 9:  Results of the Finite Element calculations. 
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With reference for Table 9, it may be seen that, as was measured with the stranded 
ropes, the k factor increases correspondingly with the intensity of the asymmetry. 
Note that one full lay length of strand was modelled, but that in the following, the 
pictures show only half a lay length to aid clarity. 
Once the model had been developed, attention was focused on the asymmetric 
configuration with 4 cut wires, because this configuration was tested with strain gauges 
installed on the wires (Figures 10 and 11). 
The initial calculations were performed on the basis of a bi-linear stress strain curve 
for the wire (Figure 12). 
The wires adjacent to the cut wires are the most loaded whereas the opposite wires 
are almost unloaded. 
 

  
Figure 10:  Distribution of the stresses among the remaining wires (cut wires n°1 - 4). 

 
It was specified that the breaking load of the rope was attained when most of the 
section of the most loaded wires had reached the breaking strength of the wire. The 
pictures below (Figure 11) show the results of the determination of the rope’s breaking 
strength for the configuration of '4 cut wires asymmetric'. 

 

 
(a)    (b)    (c) 

Figure 11: Evaluation of the breaking strength of the rope. (a) Shows the stress distribution for a line 
pull of 160 kN, the wires n°5 and n°12 have not fully reached their breaking stress, (b) for 
a line pull of 165 kN the whole section of these wires have reached this stress and (c) for 
a line pull of 168 kN, the wires n°6 and n°11 begin to reach this stress. 

Wire 5 

Wire 7 

Wire 12 

Wire 5 

Wire 12

160 kN 165 kN 168 kN 

Wire 6 

Wire 8 

Wire 11 

Wire 10 

Wire 9 
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The results of the strain gauge measurements on a single wire (see § 9.2) made it 
possible to refine the model and input a more accurate stress strain curve into the 
software (Figure 12). 
 

 
Figure 12:  Bi-linear (red) stress strain curve and non linear (blue) curve. 

 
Calculations for the asymmetric configuration with 4 cut wires were then re-run with 
the non-linear stress strain curve. Figure 13 presents the results of these calculations. 
It shows the maximum stresses in each wire (see e.g. Figure 24). 
Results for wires 9 to 12 are not shown, as owing to the symmetry they are nearly 
identical to those of wires 5 to 8. 
 

 
Figure 13:  Results of the calculations with the non linear stress strain curve. 
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Owing to the flattening of the curves for the high loads, the amplification factor is not 
the same for the whole range of loading. 
The amplification factor is defined as the ratio between the stress calculated with the 
ANSYS model and the stress for the symmetric configuration with the same number of 
cut wires (force divided by the remaining metallic area of the rope). 
 

 50 kN 80 kN 170 kN 

ANSYS results [MPa] 987 1428 1760 

Symmetric configuration [MPa] 417 668 1419 

Amplification factor 2.37 2.14 1.24 

k factor - - 1.53 

Table 10: Amplification factor versus load. 50 kN corresponds to a safety factor of 5 for a new rope, 80 
kN corresponds to a safety factor of 3 for a new rope and 170 kN corresponds to the breaking 
strength of rope with 4 cut wires. (Note that The K factor is calculated on the basis of a 
breaking strength, thus there is no value for 50 kN and 80 kN). 

 
With reference to Table 10, it may be seen that the amplification factor decreases when 
the loading increases. 
Thus the phenomenon of amplification is more important for a rope in operation (safety 
factor of 5 – running rope, or safety factor of 3 – guy rope) than for a rope that is loaded 
almost at its breaking strength. 
It is noted that the breaking strength evaluated above (170 kN) is very close to that 
evaluated on the basis of the calculation with bi-linear stress strain curve (165 kN – 
Table 9). 
The amplification factor identified above (Table 10) is related to the same phenomena 
as the k factor (see §3), but it is calculated on the basis of the stresses whereas the k 
factor is calculated in the basis of the load. The k factor corresponding to a breaking 
load of 170 kN is 1.53 whereas the amplification factor is only 1.24 for the same load. 
 
 
9 Strain gauge measurements on a spiral strand rope 
In order to validate the computer model of the distribution of load between the wires in 
a spiral strand rope (both with and without cut wires) it was decided to undertake a 
series of tests with strain gauges fitted on the outer layer of wires of a sample. A length 
of the 1 × 19 spiral strand was used for this test, which had 12 outer wires each 
Ø3.17 mm. 

 As a first step, a single outer wire was removed from a length of spiral strand, 
carefully straightened, and a single gauge applied mid length. This provided 
basic load-strain information for the wires in the rope. 

 Following on from this, the spiral strand sample was made up and tested as 
described below. 

 



Rope – Present and Future 

282 

9.1 Strain gauge equipment 
The strain gauges used in the work reported here were standard gauges with a nominal 
resistance of 120 Ω and gauge factor of 2 (EA-06-031DE120 manufactured by Micro 
Measurements). The gauges were 0.79 mm long and 0.81 mm wide, mounted on 
7 mm × 3 mm flexible backing. Gauges were attached to the wires following the 
recommended procedures from the manufacturer. 
Each gauge was in a quarter Wheatstone bridge configuration using a Vishay 5100B 
multiple channel amplifier / signal conditioner controlled through a PCMCIA port by a 
laptop running Strainsmart software. The gauges were wired using the three wire 
configuration to prevent drift in readings caused by temperature variations. Calibration 
of the strain gauges was achieved using the shunt calibration facility in this device. 
The multiple channel amplifier also had a high voltage input card which accepted the 
analogue signal for the actuator displacement and load from the tensile test machine. 
This allowed simultaneous acquisition of load, actuator displacement and strain 
readings which could then be exported to Excel or Matlab for further analysis. 
 

9.2 Wire test 
In order to calculate the stress in the rope wires, the stress-strain relationship was 
measured by testing a single wire. The wire was prepared with a strain gauge in the 
centre, and then tested to failure in TTI Testing's universal testing machine (Figure 14). 
The stress-strain relationship was measured using both the strain gauge and also 
derived from the machine actuator movement. The results are presented in 
Figure 15 (a). In both cases the stress is calculated as the load divided by the wire 
cross sectional area. The strain derived from the actuator movement was calculated 
as the change in length divided by the initial sample length (433 mm). 
It may be seen that the strain gauge derived behaviour does not show the complete 
break load test since the gauge failed before the wire broke. It also noted that the 
actuator derived strain is significantly higher than that measured by the strain gauge. 
The reason for this error is the effect/movement of the wedge grips which held the ends 
of the wire. If the Youngs’ modulus (E) is derived by performing a linear fit of the first 
0.5% strain of the strain gauge curve it gives a value of 204 GPa which is as expected. 
To derive the stress/strain behaviour for the wire right up to the point of failure, it was 
necessary to 'extend' the experimentally derived strain gauge curve. To do this, the 
actuator and the strain gauge stress-strain values were compared (Figures 15 (b) and 
(c)), and the relationship shown by the dashed line in Figure 15 (a) inferred. This gives 
an approximate failure strain of 4% which is typical for rope wire. 
This relationship was then used to derive the individual wire stress from the strain 
gauge results obtained in the rope tests. It is noted that this new extended non linear 
stress strain relationship (15th order polynomial using the least square method) is only 
valid between 0 and 4% strain. 
One consideration with this approach is that if a wire goes into a ‘plastic’ region during 
loading then this will change the stress strain behaviour if it is unloaded and reloaded. 
While this clearly will happen when the rope is taken to break it was thought to be a 
reasonable assumption to discount this for the initial 'non break' tests since each 
condition was tested twice and appeared to give repeatable results. 
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Figure 14:  Wire test in universal testing machine, right, detail showing the wedged end grips. 

 

 
Figure 15: (a) Shows the strain gauge and the cross head derived stress-strain plot (b) Shows the 

results up to the gauge failure and (c) Shows the difference between the two results- if this 
linear relationship is extended it is possible to infer the strain gauge results up to the wire 
failure (shown in dashed in (a)). 

 

9.3 Spiral strand test 
A spiral strand sample (nominal length 800 mm) was terminated in TTI Testing conical 
sockets and completed with Wirelock® resin compound. Twelve strain gauges were 
mounted at the centre cross section of the sample, one gauge on each of the outer 
wires. 
The strain gauges (numbered sequentially around the circumference 1-12, as per 
Table 9) were used to measure the strain in the rope under various conditions: 
 

(1) The undamaged rope cycled up to a load of 175 kN and then unloaded; 
(2) Wire 1 cut, the sample loaded to 160 kN and then unloaded; 
(3) Wires 1 and 2 cut, the sample loaded to 140 kN and unloaded; 
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(4) Wires 1, 2, 3 and 4 loaded to 100 kN and unloaded; and finally, 
(5) Rope taken to break load. 

 
It was not practical to cut the wires at same cross section as the strain gauges owing 
to concerns about damaging the neighbouring gauges. Thus wires were cut 75 mm 
from the strain gauge position. 
Each test (with the exception of the break test) was repeated at least once and the 
results were found to be repeatable. The strain vs. load plots for the first four cases 
listed above are shown in Figure 16 and the stress vs. load are shown in Figure 17. It 
seems clear from these results that the wires adjacent to the breaks take the highest 
load and the load then drops off to a minimum for the wires furthest from (opposite) the 
break (or breaks). It may also be seen that owing to frictional effects, there is a 
measurable load carried in the broken wire just a short distance from the break site. 
The rope break test (Figure 18) shows a convergence of wire stresses as the rope gets 
closer to break presumably caused by a combination of wire yielding and realignment. 
This kind of behaviour has been seen in past experimental work on ropes [4] and can 
give a significant increase in rope endurance. To illustrate the stress distribution more 
clearly the stress at 100 kN has been plotted against wire number for the undamaged 
rope and the three cut wire configurations (Figure 19). 
 

 
Figure 16: Strain-Load behaviour of the rope for four states: (a) Undamaged (b) Wire 1 broken (c) 

Wires 1 and 2 broken and (d) Wires 1, 2, 3 and 4 broken. 
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Figure 17: Stress-Load behaviour of the rope as derived from the non linear stress-strain behaviour 

for four states: (a) Undamaged (b) Wire 1 broken (c) Wires 1 and 2 broken and (d) Wires 
1, 2, 3 and 4 broken. 

 
 

 
Figure 18: (a) Load-Strain and (b) Load-Stress behaviour for the rope with 4 wires broken taken up to 

breaking load. 
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Figure 19: Stress in the wires for the 4 states at 100 kN load showing that the wires adjacent to the 

breaks taking more stress than the wires on the opposite sides. 

 

9.3.1 Load sharing in the rope 
By analysing these results in a slightly different way it also possible to obtain some 
insight into the load sharing of the external wires in the rope for different rope loads 
and infer the load taken by the internal wires. By calculating the load in the wire from 
the strain gauge measurement (by calculating stress and then multiplying by area) and 
dividing this by the load share assuming it is evenly distributed (i.e. rope load/number 
of wires), the load share is calculated. I.e the following relationship: 
 
Load share (%) = 100 × Wire Stress / (L × N) 
 
Where L is the rope load and N is the number of wires in the rope (19). Applying this 
relationship gives the percentage of load the wire is taking compared to that for a 
perfect rope: 100% would be the ideal value, above this means that the wire is taking 
more than its share and a lower value implies less. If these values are averaged 
between all twelve external wires then this provides an indication of how close the 
whole layer is to the ideal state. 
Each test is plotted for a range of rope loads and these are shown in Figure 20 and 
Figure 21. What seems to be clear from this is that for this construction the external 
wires take significantly above their ideal share of load at low rope loads and this 
gradually drops to towards the ideal 100% value with increasing load. The implication 
of this is that the internal wires are taking very little (or possibly no load at all) at low 
rope loads and gradually take up load as the load in the rope increases. It seems that 
there may even be some compression in the internal wires at the very low loads since 
in theory if the external layer takes 160% of the load this should be the total rope load 
(i.e. because 19/12 = 160%). The mechanism of this load transfer on to the internal 
wires is not known but it may be through a gripping effect as the external layers 
squeeze down on the internal ones at higher loads, the phenomenon would require 
further investigation to fully characterize and understand it. 
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Figure 20: Load share in the wires for a range of rope loads for four states: (a) Undamaged (b) Wire 1 

broken (c) Wires 1 and 2 broken and (d) Wire 1, 2, 3 and 4 broken. 

 

 
Figure 21:  Load share in the rope with 4 wires broken for a range of loads, taken up to break load. 

 
 
9.3.2 Comparison with calculations 
The measured breaking strength of the spiral strand with 4 cut wires was 207 kN 
whereas the calculated breaking load was 170 kN. 
Note that all the gauges failed before failure of the rope (Figure 22). On Figure 22 the 
behaviour of wires 12 and 8 has been extrapolated (dotted lines). 
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Figure 22:  Breaking test – Stress versus time. 

 
 

 
Figure 23:  Comparison between calculations and test results. 

 

Wire 5 

Wire 6 

Wire 7 

Wire 8 

Wire 9 

Wire 10

Wire 11 

Wire 12 



OIPEEC Conference – La Rochelle – April 2017 

289 

The calculations are based on the maximum local stress, whereas the measurements 
with the strain gauges take into consideration the average stress in the area of the 
gauge. 
Furthermore, the shape of the calculated wire is not round, and thus there is a kind of 
notch effect on the edge of the modelled wire which does not exist in reality. 
The Figure 24 shows the results of the calculation for the wire 11. A difference of 
100 MPa may be seen on the same section. 
 

 
Figure 24:  Stress distribution in the 3D model of the wire. 

 
If it is assumed that the actual average stress is 100 MPa lower than the calculated 
one, the same stress will in fact be reached for a higher load than the one shown on 
the diagram (Figure 23). 
For the most loaded wires (n°5 and n°6) a variation of the stress of 100 MPa in the 
flattened zone of the graph leads to a reduction of the load of about 40 kN (Figure 23). 
Thus the corrected calculated breaking strength would be 170 + 40 = 210 kN, which is 
very close to the 207 kN that was measured. 
 
So it may be said that the results of the calculations are in accordance with the results 
of the measurements. 
 
 
10 Breaking tests with spiral strand ropes 

10.1 Test results 
The results of the testing with cut wires performed on the 1 × 19 and 1 × 37 spiral 
strand samples are presented in Tables 11 and 12. 
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Cut 
wires 

%CSA 
cut Comments Breaking 

Load  
% CSA 

residual 
% 

residual 
strength 

 

k 

[ - ] [ % ] [ - ] [kN] [ % ] [ % ] [ - ] 

0 0.0 no cut wires 260.0 100.0 100.0 1.000 

2 10.4 2 symmetrical cut wires 232.2 89.6 89.3 1.029 

4 20.9 4 symmetrical cut wires (2+2) 207.0 79.1 79.6 0.976 

8 41.7 8 symmetrical cut wires (4+4) 153.7 58.3 59.1 0.981 

1 5.2 1 cut wire 246.1 94.8 94.7 1.019 

2 10.4 2 adjacent cut wires 222.4 89.6 85.5 1.394 

4 20.9 4 adjacent cut wires 208.4 79.1 80.2 0.947 

4 20.9 4 adjacent cut wires (10.7 m sample) 193.2 79.1 74.3 1.230 

8 41.7 8 adjacent cut wires 154.7 58.3 59.5 0.971 

8 41.7 8 adjacent cut wires (10.7 m sample) 152.6 58.3 58.7 0.990 

Table 11:  Cut wire tests on 1 × 19 spiral strand. 

 

Cut 
wires 

%CSA 
cut Comments Breaking 

Load  
% CSA 

residual 
% 

residual 
strength 

 

k 

[ - ] [ % ] [ - ] [kN] [ % ] [ % ] [ - ] 

0 0.0 no wire breaks 285.7 100.0 100.0 1.000 

2 5.4 2 adjacent cut wires 271.0 94.6 94.9 0.944 

7 18.9 7 adjacent cut wires 230.3 81.1 80.6 1.026 

7 18.9 4 on outer layer, 3 on second layer 218.9 81.1 76.6 1.238 

Table 12:  Cut wire tests on 1 × 37 spiral strand. 
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10.2 Analysis and comparison with calculations 
Table 13 summarises the k factor for the different wire break configurations for the 
tests and computer model. 
The results of the calculations (Table 9) and the tests (Table 11) agree for the 
symmetric configuration where the k factor is always close to 1. 
However we notice significant differences for the asymmetric configurations where the 
measured breaking strength is bigger than the one calculated and the measured k 
factor remains close to 1, and quite often smaller than 1. 
This can be partially explained by the high level of plasticity in the wires before failure 
revealed by the wire test. When this non linear behaviour is then incorporated into the 
model it allows more load sharing to take place before ultimate failure of the rope. It 
must also be considered that the wires within the sample can perform some 
geometrical adjustment, especially in the plasticity zone. The slow loading rate of the 
machine actuator will allow the rope to implement some geometrical change as the 
load increases. 
This can also be partially explained by the fact that for the stranded ropes, each strand 
is more constrained by the others around it and is much less able to adjust. The k 
factors are thus significantly higher than those measured during the tests of the spiral 
strand ropes. 
 
 

%CSA 
cut Comments Tests Calculations 

bi-linear 
Calculations 
non-linear 

  (Table 11) (Table 9) (Table 10) 

[ % ] [ - ] [ - ] [ - ] [ - ] 

10.4 2 symmetrical cut wires 1.03 0.95  

20.9 4 symmetrical cut wires (2+2) 0.98 0.96  

41.7 8 symmetrical cut wires (4+4) 0.98 1.01  

5.2 1 cut wire 1.02 1.92  

10.4 2 adjacent cut wires 1.39 1.92  

20.9 4 adjacent cut wires 0.95 
1.63 1.53 

20.9 4 adjacent cut wires (10.7 m sample) 1.23 

41.7 8 adjacent cut wires 0.97 
1.34 

 

41.7 8 adjacent cut wires (10.7 m sample) 0.99  

Table 13:  Comparison of the k factor between tests and calculations. 
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It appears then that the k factor is not a relevant parameter for spiral strands and a k 
factor close to 1, or even smaller than 1 does not mean that there is no load imbalance 
at lower loads as we have demonstrated with the modelling (Figure 13, Table 10), and 
with the gauge results (Figures 20 and 21 - very clearly showing that the load share 
gradually becomes more even as the load increases). In order to distinguish this 
phenomenon from the k factor we have called this the amplification factor which is 
calculated on the basis of the stress in the wire at a given rope load (Table 10). It was 
also noted that at the low loads the external wire layer appears to take more than its 
share of load but that the value tends towards the ideal value as the load increases. 
Although, the k factor is not a relevant parameter for identifying the working conditions 
of a spiral strand, it is noted that, the k factor does have some sensitivity to the degree 
of asymmetry (Figure 25, Table 12). 
 

  
(a) (b) 

Figure 25: For the same loss of metallic area (A/A0=81.1%), the remaining strength is 230.3 kN 
(k = 1.03) for the configuration (a) whereas it is only 218.9 kN (k = 1.24) for the 
configuration (b). 

 
 
11 Conclusions 
In the case of a stranded rope the distribution of the wire breaks has a significant impact 
on the breaking strength of the rope. If the broken wires are localized in the same zone 
of one strand, the k factor can be assumed to be at least 3 for a loss of metallic area 
of 5% and if distributed on two strands, the k factor can be assumed to be at least 2 
for a loss of metallic area of 10%. 
This should influence the counting of the broken wires for the determination of the 
discard criteria. 
For the spiral strand ropes however, the loss of strength seems to consistently match 
the loss of area independent of the level of asymmetry in the wire break configuration 
(i.e. k remains close to 1 for all cases). 
This does not mean that there is not a large imbalance of loads in the wires for 
asymmetric breaks however and we have clearly demonstrated this through the strain 
gauge results. The point is that before the ultimate failure of the strand some kind of 
evening out processes takes place and so the imbalance is not reflected in the k value. 
In order to reflect this behaviour, it is proposed that another factor is used to account 
for this which is termed the amplification factor (see definition just above Table 10). 
It must be taken into account that this amplification is bigger for a rope in operation 
(safety factor 5 to 3), than for a rope loaded close to its breaking strength. 
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An amplification factor of at least 2 seems appropriate for the configuration with 4 cut 
wires. 
So the assessment of the remaining capability of the rope shown in Figure 1, which 
depends on the actual safety factor for a given load, should be performed on the basis 
of an amplification factor of at least two, thus without taking into account the external 
layer of wires. 
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